Toán lớp 12: Phương trình mặt cầu | Phân dạng & bài tập [Có tài liệu] mới nhất 2023

Bạn đang xem bài viết Phương trình mặt cầu | Phân dạng & bài tập [Có tài liệu]. Hi vọng sẽ là đáp án bạn ưng ý. Cùng theo dõi nhé!

Câu 1: Viết phương trình mặt cầu có tâm I(–1; 2; –3) và đi qua giao điểm của đường thẳng d: với mặt phẳng (Oxy).

A. (x + 1)2 + (y + 2)2 + (z + 3)2 = 27

B. (x – 1)2 + (y – 2)2 + (z – 3)2 = 27

C. (x – 1)2 + (y – 2)2 + (z – 3)2 = 9

D. (x + 1)2 + (y + 2)2 + (z + 3)2 = 9

Lời giải:

Chọn B

Mặt phẳng Oxyz là: z = 0

Gọi A = d ∩ (Oxyz) ⇒ t = –3 ⇒ A(–2; 5; 0)

Vì điểm A nằm trên mặt cầu nên bán kính của mặt cầu là

Phương trình mặt cầu (S) tâm và bán kính I(–1; 2; –3) và bán kính

(x – 1)2 + (y – 2)2 + (z – 3)2 = 27

Câu 2: Trong không gian Oxyz, cho mặt cầu (S) có tâm là điểm I(–1; 2; –3) và tiếp xúc với trục Ox. Phương trình của (S) là:

A. (x – 1)2 + (y + 2)2 + (z – 3)2 = 13

B. (x – 1)2 + (y + 2)2 + (z – 3)2 = 27

C. (x + 1)2 + (y – 2)2 + (z + 3)2 = 13

D. (x + 1)2 + (y – 2)2 + (z + 3)2 = 27

Lời giải

Chọn C

Gọi A là hình chiếu của I lên trục Ox ⇒ A(–1; 0; 0).

Vì điểm A nằm trên mặt cầu nên bán kính của mặt cầu là

Phương trình mặt cầu (S) tâm I(–1; 2; –3) và bán kính

(x + 1)2 + (y – 2)2 + (z + 3)2 = 13

Câu 3: Mặt cầu (S) tâm I(–1; 2; –3) và tiếp xúc với mặt phẳng (P): x + 2y + 2z + 1 = 0 có phương trình:

A.

B.

C.

D.

Lời giải

Chọn B

Bán kính mặt cầu là:

Phương trình mặt cầu là:

Câu 4: Mặt cầu (S) tâm I(2; 1; 5) và tiếp xúc với mặt cầu (S1): (x – 1)2 + y2 + z2 = 3 có phương trình:

A.

B.

C.

D.

Lời giải

Chọn A

Từ (S1): (x – 1)2 + y2 + z3 = 3 ⇒ Tâm I1(1; 0; 0) và bán kính

Do vậy điểm I(2; 1; 5) nằm ngoài mặt cầu (S1): (x – 1)2 + y2 + z2 = 3

Ta có pt đường thẳng II1

Gọi A = II1 ∩ (S1) ⇒ A(1 – t; –t; –5t). Do A ∈ (S1) nên

Bán kính mặt cầu là:

Phương trình mặt cầu là: (x – 2)2 + (y – 1)2 + (z – 5)2 = 12

Bán kính mặt cầu là:

Phương trình mặt cầu là: (x – 2)2 + (y – 1)2 + (z – 5)2 = 48

Câu 5: Mặt cầu (S) tâm I(1; 2; 4) và tiếp xúc với mặt phẳng (S1): (x + 1)2 + y2 + (z – 2)2 = 27 có phương trình:

A. (x + 1)2 + (y + 2)2 + (z + 4)2 = 3

B. (x + 1)2 + (y + 2)2 + (z + 4)2 = 9

C. (x – 1)2 + (y – 2)2 + (z – 4)2 = 3

D. (x – 1)2 + (y – 2)2 + (z – 4)2 = 9

Lời giải

Chọn C

Từ (S1): (x + 1)2 + y2 + (z – 2)2 = 27, tâm I1(–1; 0; 2) và bán kính

Do vậy điểm I(1; 2; 4) nằm trong mặt cầu (S1)

(S) và (S1) tiếp xúc

Bán kính mặt cầu là:

Phương trình mặt cầu là: (x – 1)2 + (y – 2)2 + (z – 4)2 = 3

Câu 6: Mặt cầu (S) tâm I(–1; 2; 3) và tiếp xúc với mặt phẳng tọa độ (Oyz) có phương trình:

A. (x – 1)2 + (y + 2)2 + (z + 3)2 = 1

B. (x + 1)2 + (y – 2)2 + (z – 3)2 = 14

C. (x + 1)2 + (y – 2)2 + (z – 3)2 = 1

D. (x – 1)2 + (y + 2)2 + (z + 3)2 = 14

Lời giải

Chọn C

Phương trình mặt phẳng (Oyz): x = 0

Bán kính mặt cầu là:

Phương trình mặt cầu là: (x + 1)2 + (y – 2)2 + (z – 3)2 = 1

Câu 7: Trong không gian Oxyz, cho hai điểm A(1; 3; 2), B(3; 5; 0). Phương trình mặt cầu đường kính AB là:

A. (x – 2)2 + (y – 4)2 + (z – 1)2 = 3

B. (x – 2)2 + (y – 4)2 + (z – 1)2 = 12

C. (x + 2)2 + (y + 4)2 + (z + 1)2 = 12

D. (x + 2)2 + (y + 4)2 + (z + 1)2 = 3

Lời giải

Chọn A

Trung điểm của đoạn thẳng AB là

Mặt cầu đường kính AB có tâm I(2; 4; 1), bán kính

Vậy phương trình của mặt cầu là: (x – 2)2 + (y – 4)2 + (z – 1)2 = 3

Câu 8: Trong không gian Oxyz. Viết phương trình mặt cầu (S) biết (S) có bán kính R = 3 và tiếp xúc với mặt phẳng (Oxy) tại điểm M(1; 2; 0)

A. x2 + y2 + z2 – 4x – 2y – 6z + 5 = 0

B. x2 + y2 + z2 + 4x + 2y + 6z + 5 = 0

C. x2 + y2 + z2 – 4x – 2y – 6z + 11 = 0

D. x2 + y2 + z2 + 4x + 2y + 6z + 11 = 0

Lời giải

Chọn A

Giả sử mặt cầu (S) có tâm I(a; b; c)

Do mặt cầu (S) tiếp xúc với mặt phẳng (Oxy) tại điểm M(1; 2; 0) nên M là hình chiếu của I(a; b; c) lên mp (Oxy) suy ra I(2; 1; c)

Ta có mp (Oxy) có phương trình là z = 0

Ta có

Với c = 3

Mặt cầu I(2; 1; 3), bán kính R = 3 có phương trình là:

(x – 2)2 + (y – 1)2 + (z – 3)2 = 9 ⇔ x2 + y2 + z2 – 4x – 2y – 6z + 5 = 0

Với c = –3

Mặt cầu I(2; 1; –3), bán kính R = 3 có phương trình là:

(x – 2)2 + (y – 1)2 + (z + 3)2 = 9 ⇔ x2 + y2 + z2 – 4x – 2y + 6z + 5 = 0

Câu 9: Phương trình mặt cầu (S) đi qua A(1; 2; 3), B(4; –6; 2) có tâm I thuộc trục Ox là

A. (S): (x – 7)2 + y2 + z2 = 6

B. (S): (x + 7)2 + y2 + z2 = 36

C. (S): (x + 7)2 + y2 + z2 = 6

D. (S): (x – 7)2 + y2 + z2 = 49

Lời giải

Chọn D

Vì I ∈ Ox nên gọi I(x; 0; 0).

Do (S) đi qua A, B nên

Suy ra I(7; 0; 0) ⇒ R = IA = 7

Do đó (S): (x – 7)2 + y2 + z2 = 49

Câu 10: Phương trình mặt cầu (S) đi qua A(2; 0; –2), B(–1; 1; 2) và có tâm I thuộc trục Oy là

A. (S): x2 + y2 + z2 + 2y – 8 = 0

B. (S): x2 + y2 + z2 – 2y – 8 = 0

C. (S): x2 + y2 + z2 + 2y + 8 = 0

D. (S): x2 + y2 + z2 – 2y + 8 = 0

Lời giải

Chọn A

Vì I ∈ Oy nên gọi I(0; y; 0).

Do (S) đi qua A, B nên

Suy ra I(70; –1; 0) ⇒ R = IA = 3

Do đó (S): x2 + (y + 1)2 + z2 = 9 ⇔ x2 + y2 + z2 + 2y – 8 = 0

Câu 11: Phương trình mặt cầu (S) đi qua A(1; 2; –4), B(1; –3; 1), C(2; 2; 3) và tâm I ∈ (Oxy) là

A. (x + 2)2 + (y – 1)2 + z2 = 26

B. (x + 2)2 + (y – 1)2 + z2 = 9

C. (x – 2)2 + (y – 1)2 + z2 = 26

D. (x – 2)2 + (y – 1)2 + z2 = 9

Lời giải

Chọn A

Vì I ∈ (Oxy) nên gọi I(x; y; 0). Ta có:

Câu 12: Viết phương trình mặt cầu tiếp xúc với cả ba mặt phẳng tọa độ và đi qua điểm M(2; 1; 1)

A.

B.

C.

D.

Lời giải

Chọn B

Giả sử I(a; b; c) là tâm mặt cầu (S) tiếp xúc với cả ba mặt phẳng tọa độ và đi qua điểm M(2; 1; 1).

Vì mặt cầu (S) tiếp xúc với cả ba mặt phẳng tọa độ và đi qua điểm M(2; 1; 1) có các thành phần tọa độ đều dương nên a = b = c = r

Phương trình mặt cầu (S) là (x – a)2 + (y – b)2 + (z – a)2 = a2

Vì mặt cầu (S) đi qua điểm M(2; 1; 1) nên

Câu 13: Cho mặt cầu (S) có tâm I(1; 2; –4) và thể tích bằng 36π. Phương trình của (S) là

A. (x – 1)2 + (y – 2)2 + (z + 4)2 = 9

B. (x – 1)2 + (y – 2)2 + (z – 4)2 = 9

C. (x + 1)2 + (y + 2)2 + (z – 4)2 = 9

D. (x – 1)2 + (y – 2)2 + (z + 4)2 = 3

Lời giải

Chọn A

Ta có:

Khi đó (S) có tâm I(1; 2; –4) và bán kính R = 3

⇒ (S): (x – 1)2 + (y – 2)2 + (z + 4)2 = 9

Câu 14: Cho mặt cầu (S) có tâm I(1; 2; 3) và diện tích bằng 32π. Phương trình của (S) là

A. (x – 1)2 + (y – 2)2 + (z – 3)2 = 16

B. (x + 1)2 + (y + 2)2 + (z + 3)2 = 16

C. (x – 1)2 + (y – 2)2 + (z – 3)2 = 8

D. (x + 1)2 + (y + 2)2 + (z + 3)2 = 8

Lời giải

Chọn C

Ta có:

Khi đó (S) có tâm I(1; 2; 3) và bán kính

⇒ (S): (x – 1)2 + (y – 2)2 + (z – 3)2 = 8

Câu 15: Cho mặt cầu (S) có tâm I(1; 2; 0). Một mặt phẳng (P) cắt (S) theo giao tuyến là một đường tròn (C). Biết diện tích lớn nhất của (C) bằng 3π. Phương trình của (S) là

A. x2 + (y – 2)2 + z2 = 3

B. (x – 1)2 + (y – 2)2 + z2 = 3

C. (x – 1)2 + (y – 2)2 + (z + 1)2 = 9

D. (x – 1)2 + (y – 2)2 + z2 = 9

Lời giải

Chọn B

Nhận xét: Mặt phẳng (P) cắt (S) theo giao tuyến là một đường tròn (C) và diện tích của (C) lớn nhất khi (P) qua tâm I của (S).

Ta có:

Khi đó (S) có tâm I(1; 2; 0) và bán kính

⇒ (S): (x – 1)2 + (y – 2)2 + z2 = 3

Câu 16: Cho mặt cầu (S) có tâm I(1; 1; 1). Một mặt phẳng (P) cắt (S) theo giao tuyến là một đường tròn (C). Biết chu vi lớn nhất của (C) bằng . Phương trình của (S) là

A. (x – 1)2 + (y – 1)2 + (z – 1)2 = 4

B. (x + 1)2 + (y + 1)2 + (z + 1)2 = 2

C. (x + 1)2 + (y + 1)2 + (z + 1)2 = 4

D. (x – 1)2 + (y – 1)2 + (z – 1)2 = 2

Lời giải

Chọn D

Đường tròn (C) đạt chu vi lớn nhất khi (C) đi qua tâm I của mặt cầu (S).

Ta có:

Khi đó (S) có tâm I(1; 1; 1) và bán kính

⇒ (S): (x – 1)2 + (y – 1)2 + (z – 1)2 = 2

Câu 17: Cho I(1; –2; 3). Viết phương trình mặt cầu tâm I, cắt trục Ox tại hai điểm A và B sao cho

A. (x – 1)2 + (y + 2)2 + (z – 3)2 = 16

B. (x – 1)2 + (y + 2)2 + (z – 3)2 = 20

C. (x – 1)2 + (y + 2)2 + (z – 3)2 = 25

D. (x – 1)2 + (y + 2)2 + (z – 3)2 = 9

Lời giải

Chọn A

Gọi M là hình chiếu vuông góc của I(1; –2; 3) trên trục Ox

⇒ M (1; 0; 0) và M là trung điểm của AB

Ta có:

∆IMA vuông tại M

Phương trình mặt cầu cần tìm là: (x – 1)2 + (y + 2)2 + (z – 3)2 = 16

Câu 18: Trong không gian với hệ toạ độ Oxyz. Viết phương trình mặt cầu đi qua A(2; 3; –3), B(2; –2; 2), C(3; 3; 4) và có tâm nằm trên mặt phẳng (Oxy).

A. (x – 6)2 + (y – 1)2 + z2 = 29

B. (x + 6)2 + (y + 1)2 + z2 = 29

C. (x + 6)2 + (y – 1)2 + z2 = 29

D. (x – 6)2 + (y + 1)2 + z2 = 29

Lời giải

Chọn A

Giả sử I(a; b; 0) ∈ (Oxy) là tâm, r là bán kính của mặt cầu (S) và đi qua A(2; 3; –3), B(2; –2; 2), C(3; 3; 4)

Phương trình mặt cầu (S) là (x – a)2 + (y – b)2 + z2 = r2

Vì mặt cầu đi qua A(2; 3; –3), B(2; –2; 2), C(3; 3; 4) nên

Vậy phương trình mặt cầu (S) là (x – 6)2 + (y – 1)2 + z2 = 29

Câu 19: Trong không gian Oxyz cho 4 điểm A(1; 2; –4), B(1; –3; 1), C(2; 2; 3), D(1; 0; 4). Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD.

A. (x + 2)2 + (y – 1)2 + z2 = 26

B. (x – 2)2 + (y + 1)2 + z2 = 26

C. (x + 2)2 + (y + 1)2 + z2 = 26

D. (x – 2)2 + (y – 1)2 + z2 = 26

Lời giải

Chọn A

Giả sử (S): x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 (a2 + b2 + c2 – d > 0) là phương trình mặt cầu ngoại tiếp tứ diện ABCD. Thay lần lượt tọa độ của A, B, C, D vào phương trình ta được

Do đó: I(–2; 1; 0) và bán kính

Vậy (S): (x + 2)2 + (y – 1)2 + z2 = 26

Câu 20: Viết phương trình mặt cầu (S) có tâm I(1; 0; 3) và cắt d: tại hai điểm A, B sao cho tam giác IAB vuông tại I

A.

B.

C.

D.

Lời giải

Chọn A

Đường thẳng d có một vectơ chỉ phương và P(1; –1; 1) ∈ d

Ta có:

Suy ra

∆IAB vuông tại I ⇔ ∆IAB vuông cân tại I

Vậy (S):

Bạn đang xem bài viết Phương trình mặt cầu | Phân dạng & bài tập [Có tài liệu] xem thêm các bài viết khác về chủ đề Toán lớp 12. Chúc bạn 1 ngày vui vẻ!

Related Posts